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Abstract
Motor disability continues to be a major cause of morbidity after stroke. The neural underpinnings
of disability and of functional recovery are still unclear. Here, we review recent evidence obtained
using transcranial magnetic stimulation (TMS) that provides new insight into these mechanisms. We
briefly discuss the use of TMS in the diagnosis, prognosis, and therapy of post-stroke motor disability.
Differently from previous reviews, particular emphasis is placed in the discussion of the use of TMS
as a tool to explore in detailed mechanisms of neuroplasticity during spontaneous and treatment-
induced recovery of motor function. TMS can be used to acquire the understanding of these
mechanisms required for the development of more rational and clinically useful interventions in
stroke neurorehabilitation.

Introduction
The problem

Stroke continues to be the leading cause of long term disability in the U.S. [1] Primarily due
to a loss of motor abilities and subsequent impairment in activities of daily living, stroke is
estimated to cost the U.S. over two trillion dollars in the next fifty years[2]. These economic
and social costs are not restricted to the intensive acute care that occurs with stroke, but rather
is outweighed by later outpatient costs and is highly correlated with the level of disability [3].
Taken together, these statistics emphasize the need for interventions designed to improve post-
stroke neurorehabilitation [4]. While recent advances in stroke care have primarily been
concentrated on the neuroprotective and neurovascular fronts [5,6], tools used to study and
alter cortical function have played a significant role in all parts of post-stroke care: diagnostic,
prognostic, and interventional. In this review, we will examine how transcranial magnetic
stimulation (TMS) can be used to dissect the physiologic mechanisms underlying motor
deficits, spontaneous motor recovery, and the beneficial effects of therapeutic interventions.
An understanding of these neurobiological foundations will likely enhance our abilities to
diagnose, prognosticate, and treat post-stroke motor disabilities.

TMS as a technical tool
Since the first reported use of TMS in humans[7], it has been clear that this tool would enhance
understanding of the nervous system and find application in medical treatment of nervous
system disorders. Working via the principles of electromagnetic induction, standard TMS
instruments consist of a high voltage capacitor which can be discharged through an insulated
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coil of wires [8-10]. The rapid, time-varying magnetic field created around the coil, which
passes unchanged through electrically-resistant structures such as the skull, can be used to
induce an electrical current in human brain tissue. When a TMS coil is placed on the scalp over
primary motor cortex (M1), the induced electrical current stimulates the neurons of the cortex
[11]. When first applied to stroke patients, TMS was envisioned as a less painful alternative
to transcranial electrical stimulation for the assessment of the impaired corticomotoneuronal
pathways [12], however it soon became clear that fundamental differences in the physiological
effects of TMS compared to electrical stimulation could allow more elaborate investigations
[13,14].

Electrophysiological measurements available with TMS
TMS activates a mixed population of inhibitory and excitatory cortical interneurons which can
affect local and remote pyramidal tract neurons. The frequency, intensity and coil orientation
at which TMS pulses are delivered to the cortex significantly affect its consequences and its
uses. Generally, when TMS pulses are delivered at frequencies less than 0.3Hz, it is for
measurement purposes and has not been found to alter motor cortical excitability for prolonged
periods of time as long as the motor system is at rest at the time of stimulus delivery [15,16].
However TMS stimuli applied to resting M1 at or above 0.3Hz [17] and paired pulses 1.5ms
apart given in trains of at least 0.2Hz [18] have been found to alter cortical excitability beyond
the period of stimulation. All of these and other forms of repetitive TMS (rTMS) can be used
in an interventional manner to purposely alter cortical excitability both in a facilitatory and
inhibitory way, in an attempt to change function of the underlying stimulated cortical tissues .
The following represent some of the most common TMS measures used after stroke to dissect
the physiologic mechanisms underlying motor deficits, spontaneous motor recovery, and the
beneficial effects of therapeutic interventions.

Motor evoked potentials (MEP)—When TMS is applied at intensities above motor
threshold, the activation of excitatory interneurons can result in volleys of upper motor neuron
activity which subsequently activate alpha motor neurons of the spinal cord. The summed
activity, an MEP, is measured via electromyography (EMG) from surface or needle electrodes
over or in the muscles of interest [19], or as descending volleys of direct (D) or indirect (I)
waves recorded directly from epidural electrodes over the spinal cord, close to the pyramidal
tract [20,21]. The amplitude, area under the curve, and latency of MEPs are all used in various
ways to measure motor cortical excitability.

Resting motor threshold (rMT) is defined as the intensity of stimulation required to produce
an MEP of small amplitude in 5 out of 10 trials [19].

Stimulating M1 at different stimulus intensities (relative to rMT intensity or maximum
stimulator output) creates an input/output or recruitment curve of MEP amplitudes [22,23] that
is usually sigmoidal in shape. rMT is predominantly influenced by mechanisms of neuronal
membrane excitability, evidenced by its alteration in the presence of pharmacological
modifiers of sodium and calcium channels and relative stability in the presence of modifiers
of synaptic transmission [24-26]. rMT also correlates with measures of white matter
microstructure [27]. In contrast, recruitment curves are contributed to by changes in synaptic
excitability, as evidenced by their alteration in the presence of pharmacological modifiers of
synaptic transmission [23,28].

Short-interval intra-cortical inhibition (SICI) and facilitation (SICF)—Exploiting
TMS’ preferential activation of interneurons and transsynaptic activation of pyramidal tract
cells has allowed for a better characterization of inhibitory and facilitatory mechanisms
operating within M1. Paired pulse stimulation delivered through the same magnetic coil over
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M1, where a suprathreshold test stimulus (TS) is preceded by a sub- or supra-threshold
conditioning stimulus (CS), can be used to gain insight into the relative contribution of local
inhibitory and excitatory inputs to M1 pyramidal tract cells. The CS can cause an increase in
MEP amplitude (facilitation, SICF) or decrease in MEP amplitude (inhibition, SICI) compared
to the MEP evoked by the TS alone. Inter-stimulus intervals of approximately 1.5-3ms cause
attenuation of MEP amplitudes or SICI [29], which seems to be at least partially GABA-A
receptor mediated [21,30-33]. With longer inter-stimulus intervals (~6-10ms) it is possible to
observe a facilitation of MEP amplitudes, referred to as SICF [34], a more heterogeneous
measurement that may have a significant spinal component [35]. One additional measurement
that has been proposed as useful has been the determination of recruitment curves of SICI, a
method perhaps underutilized that is likely to call for more attention in the future[36,37].

Another test of intracortical inhibition is the contralateral cortical silent period (CSP), a drop
in background voluntary EMG activity which occurs when a suprathreshold TMS pulse is
delivered to the M1 contralateral to a muscle that is voluntarily activated. It has been proposed
that the later part of the contralateral CSP [38] is a GABA-B receptor mediated cortical
phenomenon [24], and hence likely represents a separate inhibitory network or mechanism
within M1 relative to SICI [30].

Inter-hemispheric inhibition (IHI)—The inhibitory interactions between the two M1s can
be evaluated using a paired pulse technique [39], where a suprathreshold CS is applied over
the conditioning M1 at about 10ms prior to the TS applied to the conditioned M1. While other
inter-stimulus intervals have been used, the 10ms interval has been the most widely studied
(IHI10). IHI10 is likely mediated via transcallosal glutamatergic neurons from the conditioning
M1 interacting with local GABA-B receptor mediated inhibitory interneurons within the target
M1 [40,41]. Another form of measuring interhemispheric inhibition is the ipsilateral CSP,
evidenced as the suppression of voluntary EMG activity in one muscle via ipsilateral M1
stimulation [39,42-44]. While both IHI10 and ipsilateral CSP are forms of transcallosal
inhibition, they are likely mediated by different subsets of transcallosal neurons and different
interactions with local inhibitory circuits as evidenced by the lack of correlation in input/output
curves between the two measures. Also, the current direction of the CS influences the level of
ipsilateral CSP induced, unlike IHI10 [44,45]. While both can be considered complementary
measurements, ipsilateral CSP can be especially useful in stroke patients who may not have
measurable MEPs in the paretic limb after stimulation of the ipsilesional M1, but can produce
voluntary EMG activity. Measures of ipsilateral CSP in the paretic limb can reveal the level
of transcallosal inhibition targeting ipsilesional M1 [46].

Inter-regional interactions—Paired pulse and rTMS methods have also been used to
evaluate the influence of non-primary motor areas within the same and opposite hemispheres
on M1, including dorsal premotor (PMd)[47-53], supplementary motor (SMA)[47,54], parietal
[55], and cerebellar areas [56-60].

Motor mapping—A cortical map of a target muscle’s representation can be rendered by
measuring MEP amplitudes evoked in that target muscle by TMS applied to different scalp
positions [61-64]; by weighting each point by some measure of the overall map, a center of
gravity for a particular muscle representation can also be determined. Motor mapping using
TMS has some similarities with mapping using functional neuroimaging in that the size of the
map depends to some extent on the intensity of stimulation used and in that an increase in map
size may be due to either increased excitability of an unchanged cortical representation or of
an actual centrifugal increase in motor map size [65]. Alternatively, motor maps may show
well characterized topographic displacement of the center of gravity, as for example what
occurs after amputation, where a nearby representation expands consistently over the
deafferented representation [66], indicating real representational plasticity.

Dimyan and Cohen Page 3

Neurorehabil Neural Repair. Author manuscript; available in PMC 2010 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Central motor conduction (CMC)—The latency of MEP onsets can be used to measure
nervous system conduction time. When peripheral conduction time is also known, via magnetic
stimulation of the cervical roots or F-wave testing, then a central motor conduction time can
be calculated [67,68]. Abnormalities in central motor conduction time may be due to axonal
or demyelinating lesions of the corticospinal tract.

This brief introduction intended to define some of the most common TMS measurements and
their proposed mechanisms as they have been applied across healthy volunteers and post-stroke
populations. For a more detailed description of these measurements and their impact on motor
control, please refer to more thorough reviews [33]. Overall, these techniques allow detailed
analysis at various levels of interactions within and across cortical areas in health and disease.

Contribution of TMS to the study of stroke rehabilitation
Diagnostic

One area in which TMS has contributed to the neurobiological basis of motor disorders has
been when considering the evaluation and diagnosis of psychogenic paralysis. TMS may play
a role by identifying normal MEPs and CMC, ruling out corticospinal tract neurophysiological
damage [69], and in investigating the nervous system mechanisms behind motor conversion
disorder[70]. Liepert et al reported the existence of decreased excitability during motor imagery
in patients with this psychogenic paralysis. Such a finding may result in more objective
diagnostic criteria for this disorder. Theoretically, a thorough characterization of
neurophysiologic abnormalities in this disorder may lead to interventions targeting those
abnormalities, and hence better treatment.

Prognostic
One of the major concerns in stroke rehabilitation is prognosis. Previous work demonstrated
that high motor thresholds or a complete absence of MEPs in the paretic hand after subacute
stroke are associated with poorer prognosis in terms of motor recovery [71-73]. On the other
hand, the presence of MEPs, even with prolonged CMC time, may predict better prognosis
[72-78]. Functional measurements of corticospinal integrity as provided by TMS can
complement data on anatomical integrity as measured by diffusion tensor imaging (DTI). A
recent report showed that, consistent with the previous literature, paretic limb MEP presence
predicted meaningful gains in chronic stroke patients receiving motor rehabilitation [79].
Within the subgroup of patients in whom MEPs could not be evoked in the paretic hand
(theoretically predicting poor prognosis), functional outcome was poorer in patients with
greater posterior internal capsule fiber disruption, as measured by DTI. Using these methods
together can fine tune our ability to generate more accurate prognostic evaluations [79]

Understanding mechanisms of motor deficits
Using TMS as a complex probe into the neurophysiologic underpinnings of motor function
allows researchers to comment about specific mechanisms of behavior and plasticity.
Application of these techniques to patients with impaired nervous system will likely reveal
more regarding the mechanisms of both injury and recovery after stroke. These measures have
potential not only to improve diagnosis and prognosis, as discussed above, but even more
intriguingly, to reveal new unpredicted targets for therapy.

Primary motor cortex—One of the early intriguing findings in the application of TMS to
stroke patients was the presence of ipsilateral MEPs within the paretic limb [71,80-84], which
are otherwise rarely found in healthy subjects at rest. This also seemed to correlate with other
measures of increased excitability in the contralesional M1 [85-87]. Interestingly, ipsilateral
MEPs have been reported more frequently in poorly recovered stroke patients [71], a finding
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interpreted as indicating that contralesional facilitation of excitability may not be a marker of
good recovery [80]. Based on these reports, much interest was triggered regarding to what
extent alterations in excitability in contralesional M1 influence recovery of motor function in
the paretic arm, and what mechanisms may be involved. In subacute severely paretic stroke
patients, Liepert et al reported decreased SICI in contralesional M1 as compared to age-
matched controls [88]; a finding subsequently replicated in more acute patients [36,89-92].
Also, decreases in SICI in ipsilesional M1 have been consistently reported in the literature,
both in the acute and chronic periods after stroke [37,90,93-95]. When assessing changes
longitudinally, it does seem that acute disinhibition may, especially contralesionally, normalize
over time [92,96]. However, how measures of intracortical inhibition or its changes correlate
with function at any particular time-point may be highly dependent on initial patient
characteristics [36,92,96]. Another issue that is presently under investigation is the extent to
which decreased inhibition in contralesional M1 is present in patients with both cortical and
subcortical lesions [36,91], perhaps explaining the relative variance in reproducibility [94,
95]. Finally, intense scrutiny is necessary to determine how these electrophysiological
abnormalities relate to previously reported abnormalities in metabolic activity of both the
ipsilesional and contralesional hemisphere of patients with stroke [97-104].

Beyond investigation of the local changes in excitability of both M1s in stroke patients, it
should be kept in mind that functional recovery is likely related to changes in distributed
neuronal networks rather than in individual regions. Studies have begun to investigate the
alteration in transcallosal neurophysiology after stroke. IHI10 between the two M1s is likely
altered after stroke, possibly in a lesion-location dependent manner [105]. Examining whether
changes in IHI10 and SICI after stroke may be related, Butefisch and colleagues have shown
that the attenuation of SICI in ipsilesional M1 is not accompanied by a change in resting
IHI10 from contralesional to ipsilesional M1. In contrast, disinhibition of contralesional M1 is
accompanied but not completely correlated with a decrease in IHI10 from ipsilesional to
contralesional M1s [37]. Together, these findings may imply that at rest, local modulation of
inhibition within ipsilesional M1 is prominent. However, a thorough investigation of the resting
interactions between SICI and IHI10, which has begun in healthy individuals [40,106], will
need to be carried in stroke patients, at various time points and levels of recovery, before more
fundamental conclusions can be made. It should also be kept in mind that neurophysiological
abnormalities may be more prominent when patients intend to use the paretic hand, rather than
when they remain at rest.

Much of these basic cortical physiology measures have been most thoroughly examined at rest.
Clearly, extending such measures to active behavior will add significant insight into post-stroke
mechanisms of paralysis. For example, the phenomenon of facilitation of M1 excitability by
forceful or complex activity of the ipsilateral limb has been explored in the healthy brain
[106-111]. How modulations in SICI & IHI10 and their interactions may contribute to this
facilitation has also been investigated in healthy subjects [106]. Understanding of these
interactions in stroke patients would raise the possibility that non-paretic limb activity could
change the physiology of the ipsilesional M1, as proposed in neurorehabilitative interventions
like bilateral arm training [112] or mirror therapy [113]. However, with isometric force
production, non-paretic arm activity in stroke patients does not lead to as much ipsilateral M1
facilitation as seen in healthy controls [114,115]. Perhaps this lack of task-dependent
modulation in ipsilesional M1 is due to abnormalities in IHI10 after stroke [116]. Studies have
begun to address this question by looking at premovement IHI10. In chronic, relatively well
recovered stroke patients, initially normal levels of IHI10 from the contralesional to the
ipsilesional M1 remain abnormally deep at the onset of paretic hand movement, in contrast to
the disinhibition that accompanies non-paretic hand movement and movement in age matched
controls [117,118] during a simple reaction time task (Figure 1).
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Expanding this line of research to encompass measures of both local and transcallosal
neurophysiology and apply them to different motor tasks will allow us to more broadly
characterize the neurophysiologic underpinnings of motor deficits after stroke. Clearly, more
work is required to fully elaborate these findings.

Non-primary motor regions—Understanding that recovery processes are likely to rely on
changes in neurophysiological interactions between different nodes in distributed networks led
to the investigations of specific interregional interactions. Investigation of premotor cortex
contributions to stroke recovery using TMS have revealed a role for both ipsilesional [119]
and contralesional [103] dorsal premotor cortices to the functioning of the paretic hand after
stroke, with a trend towards contralesional PMd contributing more effectively in patients with
more marked impairment, while ipsilesional PMd could be more active in patients with lesser
impairment. A prominent possibility for translation of these findings will be investigations into
how purposeful modulation of premotor cortical excitability may influence functional recovery
after stroke.

It should be kept in mind that identification of neurophysiological abnormalities in patients
with stroke is not an easy task. There are technical challenges, as well as a marked heterogeneity
in patients’ characteristics that makes generalizations risky. For these reasons, careful
manipulation of the various technical tools available is of the utmost importance. It is expected
that these new investigations, many presently under way, will in the future allow greater
generalizability by fleshing out the details regarding each technique and each subgroup of
patients to which they are applied.

Understanding mechanisms underlying the beneficial effects of intervention and therapy
Just as TMS measurements can be used to investigate pathophysiology, they can also be used
to gain insight into the mechanisms underlying the beneficial effects of therapeutic
interventions. For example, using TMS measures of local inhibition and non-concurrent
functional magnetic resonance imaging (fMRI), Hamzei and colleagues demonstrated in
chronic subcortical stroke patients that functional improvement from constraint-induced (CI)
therapy was accompanied by decreased fMRI activity and decreased SICI in the ipsilesional
M1, while the opposite effects were found in patients with lesions in M1 or the corticospinal
tract [120]. This study suggested that the beneficial effects of CI therapy might be mediated at
least partially by modulation of intracortical inhibition within ipsilesional M1, perhaps
accompanied by some level of morphological changes as well[121]. We now know that the
benefits of a single session of reaching practice in moderately impaired chronic stroke patients
is accompanied by decreased transcallosal inhibition (ipsilateral CSP) [46] only in the trained
muscles, implying a specific and differential change in physiology that may contribute to the
behavioral gains.

Attempts to enhance rehabilitation by application of different forms of non-invasive electrical
and magnetic stimulation to the nervous system have increased [122-125]. Interestingly, TMS
can be used not only to carry out the stimulation, but to investigate the mechanisms by which
it may be having its effects. For example, it was found that the beneficial effects of applying
anodal transcranial direct current stimulation (tDCS) to ipsilesional M1 correlated with a
decrease in SICI in this same cortical area [126]. Using an alternative approach, it has been
proposed that the beneficial effects of downregulating excitability in the contralesional M1 by
cathodal tDCS are associated with a normalization in the abnormal IHI10 from the
contralesional to the ipsilesional M1 (Hummel et al, unpublished observations), perhaps
contributing to clinically significant effects [127-130].

TMS has also been used to evaluate the mechanisms underlying the beneficial effects of
somatosensory input modulation in patients with chronic stroke. Specifically, it has been
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reported that the beneficial effects on paretic hand motor function caused by cutaneous
anesthesia of the non-paretic hand are associated with decreased IHI10 from contralesional to
ipsilesional M1, which may be an underlying mechanism of action of the post-stroke functional
improvements seen with this and similar methods targeting the non-paretic limb, like limb
immobilization [131]. When applying somatosensory stimulation to a paretic hand in an
attempt to facilitate motor function[132-134], it was found that better baseline motor function
was correlated with deeper SICI in the contralesional hemisphere[135]. Also behavioral gains
in motor function induced by somatosensory stimulation of the paretic hand were accompanied
by a reduction in SICI and SICF in the ipsilesional M1 in patients with chronic stroke [134].

As examination of the physiologic mechanisms underlying the beneficial effects of therapeutic
interventions has expanded, so has the desire to use such measures as surrogate markers
[136,137]. While changes in TMS measured cortical excitability and motor maps can be seen
after various forms of neurorehabilitative treatments [138-145], and correlations can be found
with various functional measures, there are significant hurdles to be managed before these
measures become useful in the clinical setting. Particularly, all of these measures need to be
better standardized to make them consistent and easily reproducible across laboratories [146].
Such standardization would be an important step towards developing these measurements as
useful markers of recovery.

Finally, one of the most sought out applications of TMS, as well as other noninvasive
stimulation techniques like tDCS, is as an adjuvant strategy for rehabilitation of both motor
[123]and cognitive [147] impairment after stroke, an issue that has been thoroughly reviewed
recently in this journal [148].

Conclusions and future
While we have summarized the several ways in which TMS can be used to gain insight into
the physiological mechanisms underlying motor deficits and neurorehabilitation after stroke,
it is clear that one technique alone cannot provide a full mechanistic picture of such a
multifaceted problem. Combinations of TMS with other techniques are bound to lead to a more
sophisticated understanding. For instance, brain-derived-neurotrophic-factor (BDNF) has been
implicated as an important biochemical modulator of neural plasticity[149], and its relationship
to physiology as measured by brain stimulation is beginning to be investigated[150-152],
although much less is known in terms of its relation to motor learning. It is also being
appreciated that in vitro and non-human investigations of nervous system stimulation and
physiology have great potential to elucidate some of the complexities that cannot be approached
through human TMS work [153,154]. Finally, though it has yet to be applied to stroke patients,
concurrent TMS with various forms of metabolic functional imaging [155-157] and other
neurophysiologic measures [158] has potential to further elucidate changes in network
connectivity after stroke and during rehabilitation. In summary, TMS represents a unique tool
for probing the sophisticated physiologic mechanisms underlying motor and non-motor
network activity mediating normal and impaired behavior after stroke and other brain lesions.
And from a more sophisticated understanding of the underlying physiology, so will come more
sophisticated and effective interventions.
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Figure 1. Intra- and inter-hemispheric excitability within M1 in the healthy (A) and stroke affected
(B) brain
This diagram depicts intracortical neuronal populations within the primary motor cortices that
experience excitability changes after stroke. Black neurons reflect inhibitory influences and
white neurons represent excitatory populations. A) Diagram of M1s interactions in the healthy
brain that result in modulation of excitability in pyramidal tract (PT) neurons as tested by TMS.
B) Changes in activity of these networks after stroke. Ipsilesional short interval intracortical
inhibition (SICI) within M1 is decreased compared to the contralesional M1. At movement
onset, interhemispheric inhibition at 10ms inter-stimulus intervals (IHI10) from contralesional
to ipsilesional M1 is greater in the stroke brain than in the healthy brain. Whether this change
in IHI10 is due to an increase in the transcallosal glutamatergic elements or ipsilesional
inhibitory networks, and how IHI10 interacts with SICI in the stroke brain have yet to be
elucidated.
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